VN-210-S GNSS/INS

Tactical-Grade GNSS-Aided Inertial Navigation System

Highlights

0.05°-0.1°

0.6°/hr

Designed to MIL-STD

Dynamic Heading Accuracy (INS)

Gyro In-Run Bias Stability

Integrated L1/L2/L5/E1/E5a/b MIL-STD-810; MIL-STD-461G; **GNSS** Receiver DO-160G; IP 68

0.015°

±490°/s

RTK/PPK Capable

Tri-band GNSS

Low SWaP

Dynamic Pitch/Roll Accuracy (INS)

Gyroscope Range ±2000°/s Optional

External RTCM 3 Inputs; Exportable RINEX

56 x 56 x 31 mm; 170 grams; < 3.3 W

Product Overview

The VN-210-S is a tactical-grade, high performance GNSS-Aided Inertial Navigation System (GNSS/INS) that combines 3-axis accelerometers, gyros, and magnetometers, a tri-band L1/L2/L5/E1/E5b GNSS receiver with anti-jamming/ anti-spoofing technology, and advanced Kalman filtering algorithms to provide optimal output of position, velocity, and attitude. The VN-210-S uses VectorNav's proprietary onboard Extended Kalman Filter (EKF) to combine high-bandwidth inertial sensors and high-accuracy, lowbandwidth GNSS measurements, to deliver best-in-class low-latency performance.

The VN-210-S is available in a precision milled, anodized aluminum enclosure. Designed to MIL-STD and DO-160G standards, the VN-210-S is suitable for the most demanding military and aerospace applications.

Features

Industry-Leading INS

The VN-210-S features VectorNav's proprietary Extended Kalman Filter INS algorithm, which is proven to excel under the most challenging dynamic conditions.

RTK and PPK Positioning

The VN-210-S integrated GNSS receiver supports RTK and PPK positioning to achieve centimeter-level position accuracy. Support for Moving Baseline RTK operations coming Q1 2024.

High Dynamic Operations

The VN-210-S is available in an "Extended Range Velocity" option, enabling operation beyond the specified Altitude (50,000 m) and Velocity (500m/s) limits.

Robust Positioning

With industry leading interference mitigation capabilities and message authentication, the VN-210-S delivers improved GNSS performance and integrity across a wide variety of applications.

True Inertial Navigation System

No mounting orientation restrictions or configuration modes: Automatic filter initialization and dynamic alignment.

Software Compatibility

The VN-210-S shares communication protocol with the entire VectorNav product line.

Ease of Availability

ITAR-free and Made in the USA; Short lead times.

Each VN-210-S undergoes a robust calibration and acceptance testing process at VectorNav's AS9100 certified manufacturing facility. Performance specifications are based on comprehensive field testing and results from real-world applications, and are regularly tested to ensure continued conformance to such specifications.

Sensor Summary

- VectorNav proprietary Extended Kalman Filter INS delivers coupled position, velocity, and a continuous attitude solution over the complete 360° range of operation
- ▶ Hard/Soft Iron Compensation (Real-time and Manual 2D & 3D)
- ▶ Individually calibrated for bias, scale factor, misalignment, and gyro g-sensitivity over full operating temperature range (-40° C to +85° C)
- ▶ RTK Capable: Support for External RTCM v3 Inputs
- Raw GNSS Data: Exportable RINEX Data for PPK; Raw Pseudorange, Doppler and Carrier Phase outputs; Ephemeris Data
- Coning and sculling integrals (ΔV's, Δθ's)
- Data output format: ASCII (VectorNav), NMEA-0183, Binary (VectorNav), ARINC 429¹
- ▶ Designed to the following Environmental Standards:
 - Vibration & Shock (MIL-STD-810G)
- · Temperature (DO-160G)
- EMI & Radiation (MIL-STD-461G)
- Electrical (MIL-STD-1275E)
- ▶ IP 68 per IEC 60529

Performance Specifications

PRELIMINARY

ATTITUDE

Range (Heading/Yaw, Roll)	± 180°
Range (Pitch)	± 90°
Heading (Magnetic) ²	2.0° RMS
Heading (INS)3,4	0.05° to 0.1°, 1σ
Pitch/Roll (Static)	0.05° RMS
Pitch/Roll (INS) ⁴	0.015°, 1σ
Heading Mounting Misalignment ⁵	< 0.05°, 1σ
Pitch/Roll Mounting Misalignment ⁵	< 0.05°, 1σ
Angular Resolution	0.001°

POSITION/VELOCITY

Horizontal Position Accuracy ⁶	0.6 m RMS
Vertical Position Accuracy ⁶	0.8 m RMS
RTK Position Accuracy ⁷	1 cm + 1 ppm CEP
Free Inertial Position Drift8	0.5 cm/s ²
Velocity Accuracy	0.02 m/s

IMU Specifications	ACCELEROMETER	GYROSCOPE	MAGNETOMETER
Range	±15 g	±490°/s (Optional ±2000°/s)9	±2.5 Gauss
In-Run Bias Stability (Allan Variance)	< 10 µg	< 1°/hr (0.6°/hr typ.)	-
Noise Density	< 0.04 mg/√Hz	5°/hr /√Hz	140 µGauss/√Hz
Bandwidth	200 Hz	210 Hz	200 Hz
Cross-Axis Sensitivity	±0.05°	< 0.05 °	±0.05°

GNSS Receivers

Receiver Type	448 Channel
GPS	L1C/A, L1PY, L2C, L2P, L5
Galileo	E1, E5a, E5b, E5 AltBoc, E6
GLONASS	L1CA, L2CA, L2P, L3 CDMA
Beidou	B1I, B1C, B2a, B2b, B2I, B3
QZSS	L1C/A, L1 C/B, L2C, L5
Navic	L5
SBASE	gnos, WAAS, GAGAN, MSAS, SDCM (L1, L5)
Time-To-First-Fix (Cold / Hot)	<45s/<20s
Altitude Limit ¹⁰	50,000 m
Velocity Limit ¹⁰	500 m/s

Interfacing

Output Data Rate (IMU) ¹¹	up to 800 Hz
Output Data Rate (Position, Velocity & Attitude)	up to 400 Hz
Primary Interface	RS-422 (Optional RS-232)
Auxiliary Interface	RS-422
GNSS PPS	<10 ns RMS, 25 ns 99%
Input	Sync-in
Output	Sync-out

Environmental

Operating Temperature	40° to +85° C
Storage Temperature	40° to +85° C

Mechanical/Electrical	SIZE	WEIGHT	INPUT VOLTAGE	CURRENT DRAW ¹²	POWER ¹²
VN-210-S	56 x 56 x 31 mm	170 g	12 to 34 V	135 mA @ 24 V	< 3.3 W

- 1. Contact VectorNav for ARINC 429 option.
- 2. With proper magnetic declination, suitable magnetic environment and valid hard/soft iron calibration.
- 3. Dependant on a number of factors, contact VectorNav to discuss expected performance in your application.
- 4. With sufficient motion for dynamic alignment.
- **5.** Constant on a per part basis. Can be calibrated out during system integration using boresighting or other alignment processes.
- **6.** Dependant on SBAS, clear view of GNSS satellites, good multipath environment, compatible GNSS antenna, and measurement duration period.
- 7. Dependant on atmospheric conditions, baseline length, GNSS antenna, multipath conditions, satellite visibility and geometry.
- 8. Typical rate of growth in error of position estimates after loss of GNSS signal, provided INS full alignment prior to loss.
- 9. Contact VectorNav for Extended Range Gyro Option.
- 10. Contact VectorNav for Extended Range Velocity Option.
- 11. Contact VectorNav for higher IMU data output rates.
- 12. Not including active antenna power consumption.